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Abstract 

Lately, machine learning and artificial intelligence have dominated automated 

property valuation models. However, an extensive comparison of real estate price 

prediction models is rarely conducted. Therefore, this research aims to conduct an 

extensive comparison of 28 rent prediction models, trained on a cleaned dataset of 

79,735 Belgian residential rental properties from 2022. The evaluation 

incorporates both traditional metrics and alternative metrics to assess predictive 

performance for the train set, the test set, and across the different deciles of the test 

set. The results indicate and confirm that tree-based ensemble models, outperform 

other models in predictive performance, suggesting that these models are highly 

effective for real estate price predictions. However, ensemble models such as 

stacking and averaging show even better results but with greater computational 

burden. Further, it is inferred that traditional and alternative metrics generate 

similar findings. Lastly, this study highlights that predictive performance is better 

for middle-range rents compared to the extremes (lower and higher deciles). These 

findings are useful to real estate stakeholders for incorporation into expert systems 

used for automated valuation models. 
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1. Introduction 

In recent years, the emergence of machine learning (ML) and artificial intelligence (AI) 

has entered several fields, including real estate. In the real estate sector, it has been 

automating the property valuation process. Automated valuation gives stakeholders more 

independence and power (Steurer et al., 2021). Real estate agents can improve their 

operational efficiency by automating routine valuation tasks with ML models. For 

instance, automated property valuations free up time to focus on client service and 

unburdening the clients. Furthermore, buyers, sellers, investors, and renters become less 

dependent on real estate agents for valuations. Next to that, lenders and insurance 

companies benefit from accurate valuations because they are critical to assessing risk. 

ML models can improve the accuracy of valuations, leading to more informed lending 

decisions and more accurate insurance premium calculations. On top of that, 

policymakers, urban planners, and contractors can use predictive models to understand 

the influence of various factors, such as an improvement in energy consumption due to 

energy renovations, on sale, and rent prices. This understanding can lead to more effective 

urban planning and policy decisions.  

Predictive real estate price research has been increasing, as we will note in Section 

2. Related Work. However, many studies tend to rely on a limited selection of models, 

often following what has been previously used in the literature, without rigorously cross-

validating these models on their datasets. Researchers seem to favor established models 

out of convention or convenience, rather than through a unified, data-driven benchmark. 

This reveals the absence of a standardized framework for model selection, making it 

challenging to systematically compare studies. Our primary research objective is to 

address this gap by conducting an extensive comparison of commonly used ML models 

for rent prediction, aiming to provide a step towards a more comprehensive guide for 

selecting the appropriate models for real estate prediction problems. Furthermore, we 

introduce several, primarily linear, ML models that have not yet been applied in real estate 

predictive modeling. 

Additionally, predictive real estate price research typically employs a limited set 

of evaluation metrics, with no consensus on the most appropriate ones for this type of 

research. As our second research objective, we will utilize several alternative evaluation 

metrics, alongside traditional ones, which Steurer et al. (2021) argue are better suited for 

evaluating real estate price prediction models. These alternative metrics have, to our 

knowledge, not been adopted in the literature, making our study one of the first to 
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compare them against traditional metrics to determine if they yield similar or different 

results. 

Moreover, we investigate whether there are differences in evaluation metrics 

between high, medium, and low real estate prices, in this study rents, by evaluating 

metrics for the learned models per decile. To our knowledge, this is the first study to 

examine this issue. Thus, our third research goal is to show whether there are differences 

in the evaluation metrics across deciles and to assess whether the position of the 

prediction in the distribution should be considered to better inform about price variability. 

Lastly, while much of the focus in real estate prediction research has been on sale 

prices, rent prices hold significant economic relevance and deserve more in-depth 

exploration. Rent prices serve as a critical indicator of housing affordability, a growing 

concern in many urban areas where the cost of living is rising more rapidly than wages. 

Consequently, policymakers and urban planners increasingly rely on rental market data 

to evaluate housing accessibility and to inform the development of effective housing 

policies (ElFayoumi et al., 2021). Additionally, for investors, rental yields are a key factor 

in assessing returns on investment in residential properties, further underscoring the value 

of accurate rental price prediction models. 

In summary, our study contributes to the body of knowledge by utilizing a 

comprehensive dataset of Belgian residential rental properties in 2022 and employing 

data cleaning and preprocessing to ensure data quality. We create a wide range of ML 

regression models, leveraging hyperparameter tuning and cross-validation to optimize 

model performance. The evaluation of the learned models, both on the train set, test set, 

and per decile of the test set, integrating both traditional and alternative measurement 

methods provides a thorough assessment. Ultimately, there is also the added value of this 

research to the field as there has been relatively less research on predicting rents than on 

predicting sale prices. 

The remainder of this paper is organized as follows. Section 2 describes related 

works on prediction models in real estate research. Section 3 describes the data and the 

methodology. Section 4 presents and discusses the results. Section 5 provides the 

conclusion with a summary of the key findings, limitations, and directions for future 

research. 
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2. Related work 

A considerable literature for predicting property prices is now available. However, from 

Table 1, it is notable that the focus is rather on predicting sales prices than rental prices. 

We state this because 9 of the 38 studies in Table 1 predicted rents. When prediction 

models are applied, a handful of models are usually compared but there is a wide range 

of models used across the different studies. Linear regression models that have been 

applied in the literature of automated real estate valuation listed in Table 1 are Linear 

(LR, based on ordinary least squares), Ridge, Least Absolute Shrinkage and Selection 

Operator (LASSO), and Elastic Net (EN). Other traditional statistical regression models 

that can capture more complex relations that have been applied are Generalized Linear 

Models (GLM), Geographically Weighted Regression (GWR), Spatial Autoregressive 

Regression (SAR), and Generalized Additive Models (GAM). Nonlinear ML regression 

models that have been applied are Classification And Regression Trees (CARTs), 

ensembles – including tree-based models –, Artificial Neural Networks (ANNs), K-

Nearest Neighbors (KNN), and Support Vector Regression (SVR). Tree-based models 

include models based on aggregations of CARTs. Bagging, which is the combining of 

multiple models, of CARTs results in the Random Forest (RF) and Extra Trees (ET). 

Boosting, which is constructing an ensemble of CARTs sequentially with a focus on the 

errors made in the previous iteration, results in gradient boosting models amongst them 

eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting (LightGBM), Category 

Boosting (CatBoost) and Adaptive Boosting (AdaBoost). Also, there are other ensemble 

models which include voting, averaging, stacking, bagging, and boosting. These 

ensemble models combine the predictions of a variety of ML models into a single 

prediction. Lastly, ANNs include MultiLayer Perceptron (MLP), Long-Short-Term-

Memory (LSTM), and Convolutional Neural Networks (CNN). 

Best performing and therefore popular models from the studies, which are 

reported in Table 1, are ensembles – primarily RF and XGB – and ANNs. Many studies 

use tree-based models, such as RF and GB. They are, as already stated, ensemble models, 

built from CARTs. These CARTs are inherently prone to overfitting, but capture the 

complex relationships in the data on which they learn exceedingly well (Hastie et al., 

2009). By aggregating the CARTs, overfitting can be mitigated, and the generalizability 

and robustness of the modeling increases (Kuhn & Johnson, 2013). This is certainly 

useful for real estate datasets that are noisy and heterogeneous. In other words, the 
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reasons, which have also been brought forward by Antipov & Pokryshevskaya (2012), 

for using tree-based models are linked to the characteristics of real estate data. As such, 

the tree-based models do not require a detailed model specification. The relationships for 

features in real estate data are often non-linear and interactive (Krämer et al., 2021; 

Lenaers & De Moor, 2023; Lorenz et al., 2022; Rampini & Re, 2021; Yazdani, 2021; 

Yilmazer & Kocaman, 2020). Capturing such relationships is something tree-based 

models excel at because they are constructed from CARTs. In addition, real estate 

features contain a range of data types, from continuous to categorical. Tree-based models 

by nature handle these well. Furthermore, irrelevant, and correlated features are often 

present in real estate data. Tree-based models are capable of automatically filtering out 

these less informative features while building the CARTs. In addition, there are often 

missing values in real estate data which is not a problem for tree-based models. Moreover, 

both RF and ET are also robust to outliers, thanks to bagging (Kuhn & Johnson, 2013). 

However, classical methods such as LR remain prevalent in the literature for their 

interpretability and ease of implementation (Valier, 2020). That interpretability is crucial 

to understanding drivers of real estate prices. For example, traditional LR provides insight 

into the direction, magnitude, and significance of features. 

The choice between ML or more traditional models is hence determined by 

predictive power and interpretability (Valier, 2020). On the one hand, ML has better 

predictive power but provides lower interpretability. On the other hand, traditional 

models provide more interpretability but capture fewer complex relationships, so they 

have lower predictive power. However, with the emergence of Explainable AI (XAI), the 

tradeoff between interpretability and predictive power will prevail less because the black-

box ML models can be interpreted and explained (Tekouabou et al., 2024; Valier, 2020). 

The black-box nature can thus be cracked open. This will create a synergy between the 

superior predictive power of ML models and the ease of interpretability of those ML 

models with XAI (Tekouabou et al., 2024). 

However, there are weaknesses in prior research for real estate valuation with ML. 

First, a limited number of models are often compared. This is coupled with the 

consideration of a limited number of evaluation metrics to study the performance of the 

models. As remarked in Table 1, often used metrics are root mean squared error (RMSE), 

mean absolute percentage error (MAPE), coefficient of determination (R2), and median 

absolute error (MAE) which provide insight into the predictive power and reliability of 

the models. However, Steurer et al. (2021) express the criticism that some of them are not 
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necessarily the optimal metrics because some of the popular metrics – MAPE and R2 – 

do not symmetrically treat prediction errors. Steurer et al. (2021) therefore propose the 

use of log median prediction error (LMDPE), MAE, max-min mean absolute prediction 

error (mmMAPE), log root mean squared error (LRMSE), RMSE, max-min percentage 

error range (mmPER(x)), and inter-quartile range in ratios (IQRat) in the evaluation of 

real estate valuation models. 

Beyond that, from Table 1 emerges that there is also the issue that sample sizes 

between studies vary considerably, from a few hundred to millions of observations. Large 

data sets can have the advantage of being representative and as such generate more robust 

and reliable models and deeper insights (Kuhn & Johnson, 2013). This is important for 

ML models, as they benefit from larger sample sizes of heterogeneous data to learn 

complex relationships and patterns in data and thus have better predictive power, as they 

generalize better. Traditional models can work with relatively smaller homogeneous data 

sets to generate valuable insights by focusing on a specific location or specific segment, 

for example. It is important to note that overfitting can be a problem with complex models 

trained on small samples, making the learned relationships and patterns have little 

generalizability (Kuhn & Johnson, 2013). In addition to the influence of data quantity, 

there is also the influence of data quality which is also a common issue in training real 

estate prediction models (Iban, 2022; Tekin & Uçal Sarı, 2022). 

Furthermore, it is also quite pertinent that the comparison of existing research is 

not self-evident. After all, there is no unified framework for reporting metrics. First, 

different metrics are used. In addition, it is often unclear on which data the performance 

was checked, whether on the train, or test dataset. In this regard, often only the 

performance on one of these datasets is reported. Another issue is that target variables 

differ due to specific factors such as predicting rent or sales price, predicting prices per 

square meter, working with or without inflation corrections, applying logarithmization of 

the target variable, or differing currencies. In addition, data collection, data cleaning, and 

data pre-processing are not standardized and as such have their respective influences on 

modeling real estate prices. 

On a final note, besides the variety in modeling, which has an impact on 

performance, there is also the variety of features and types of features included in research 

that have an impact. Following Potrawa & Tetereva (2022), there are three major 

categories into which you can classify features. First, structural (S) features include 

characteristics of the property, such as the size and age of the property. Location (L) 
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factors are for example proximity to supermarkets and schools. Socioeconomic (N) 

factors are considered factors about the neighborhood of the property and can include 

demographics and income levels. The line between location and socioeconomic factors 

is sometimes blurred, so they are often treated together or interchangeably. This is 

because they are often related to each other. Integrating relevant factors about location 

and socioeconomics into real estate prediction models often leads to improved predictive 

power (Gao et al., 2022; Talaga et al., 2019; Zhou et al., 2019). In addition, there is a 

fourth category, namely the macroeconomic features that attempt to include the impact 

of the economic cycle, such as mortgage rates. However, macroeconomic characteristics 

are used less in predictive real estate price research as remarked by Zulkifley et al. (2020) 

and supported by Table 1.  

3. Data and methodology 

3.1. Data collection and data cleaning 

This study uses a dataset that is provided by Realo nv. Realo nv. is a Belgian real estate 

data platform that provides real estate professionals and other stakeholders with data-

driven insights that assist buyers, sellers, renters, and landlords in buying, selling, and 

renting their homes. The provided dataset contains 38 features and the target variable, 

monthly rent, of 87,188 Belgian residential real estate property listings from January 1st, 

2022, until December 31st, 2022.  

This raw data is cleaned. First, less relevant features, including the date of first 

and last publication, and type of address are removed. High-cardinal features that contain 

similar content are also removed. Second, duplicate observations are removed from the 

data. Next, observations for which there is no price or name of the municipality are 

dropped. Then, missing values for each observation are examined. If it exceeds 50% for 

an observation, the observation is dropped. In addition, features that have more than 80% 

missing values are dropped. This whole data-cleaning process results in a sample of 

79,735 observations with 25 features and the target variable, monthly rent (in EUR). To 

provide insight into the cleaned dataset, an overview and summary statistics are provided 

in Table 2. 
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Table 1 Previous real estate valuation research with ML 

Author(s) Sample size Feature Types Target Variable Evaluation Metrics Models Best Model 

Alkan et al. (2022) 200 S, L rent prices MAE, R2, RMSE KNN, RF, SVR SVR 

Baur et al. (2023) 63,828 S, L rent and sale prices MAE, MAPE, RMSE EN, LightGBM, LR, RF, SVR Tree-based 

Bilgilioğlu & Yılmaz (2023) 1,982 S, L, N sale prices AIC, COD, MAPE, MSE, PRD, R2, RMSE ANN, CART, CHAID, SVR ANN 

Birkeland et al. (2021) 18,795 S, L, N sale prices MAPE, MedAPE CART, Ensemble (Stacking), ET, RF, XGBoost Ensemble 

Chou et al. (2022) 13,220 S, L, N sale prices MAE, MAPE, R2, RMSE, SI ANN, CART, Ensembles, LR, SVR Ensemble 

Choy & Ho (2023) 24,317 S, L sale prices MAPE, MSE, R2, RMSE ET, KNN, LR, RF RF 

Çılgın et al. (2023) 16,578 S, L, N sale prices MAE, MAPE, MSE, RMSE ANN, LASSO, LR, Ridge, XGBoost XGBoost 

Fedorov & Petrichenko (2020) 5,491 S sale prices R2 AdaBoost, CatBoost, LR, XGBoost CatBoost 

Fourkiotis & Tsadiras (2023) 1,458 S sale prices R2, RMSLE Ensembles (Averaging, Voting), GB, LASSO, LightGBM, 
RF, ridge, SVR, XGBoost Ensemble 

Gao et al. (2022) 63,426 S, L, N sale prices MAPE, MedAPE, PE(x), R2 CART, EN, GB, GWR, LASSO, LR, MLP, RF, Ridge, 
SVR, XGBoost RF, XGBoost 

Hinrichs et al. (2021) ±190,000 S, L, N sale prices MAPE, MedAPE, RMSE EN, LASSO, LR, Ridge Ridge 

Hjort et al. (2022) 126,719 S, L, N sale prices MedE, PE(x), R2, RMSE ANN, Ensembles, LR, RF, XGBoost Ensemble 

Ho et al. (2021) 39,554 S, L sale prices MAPE, MSE, RMSE GB, RF, SVR Tree-based 

Iban (2022) 1,002 S, L sale prices COD, MAPE, PRD, R2, RMSE GB, LightGBM, RF, XGBoost XGBoost 

Kiely & Bastian (2020) 12,012,780 S, L, N sale prices MAE, MSE, R2, RMSE ANN, GB, GLM, RF ANN 

Krämer et al. (2021) 81,166 S, L, N sale prices MAPE, MedAPE, PE(x) LR, XGBoost XGBoost 

Krämer et al. (2023) 1,212,546 S, L, N sale prices MAPE, MedAPE, PE(x), R2 ANN, GAM, LR, XGBoost XGBoost 

Lenaers & De Moor (2023) 78,788 S, L rent prices MAE, MAPE, MedAE, MedAPE, RMSE CatBoost, Ridge, XGBoost CatBoost 

Lenaers et al. (2023) 18,935 S, L rent prices MAE, MAPE, RMSE LR, RF, XGBoost XGBoost 

Lorenz et al. (2022) 52,966 S, L, N rent prices / GAM, LR, SAR, XGBoost XGBoost 

Mora-Garcia et al. (2022) 39,943 S, L, N sale prices MAE, MSE, R2, RMSE ET, GB, LightGBM, LR, RF, XGBoost Ensemble 

Pai & Wang (2020) 32,215 S, L sale prices MAPE, NMAE ANN, CART, SVR SVR 

Potrawa & Tetereva (2022) 1,844 S, L, N rent prices R2, RMSE LR, RF RF 

Rampini & Re (2021) 1,228 S sale prices MAE ANN, EN, XGBoost ANN 

Sapakova & Sapakov (2024) 3,882 S sale prices MAE, MSE, R2, RMSE CART, EN, LASSO, LR, RF, Ridge, SVR RF 

Sevgen & Tanrivermiş (2024) 1,315,675 S, L sale prices adj. R2, MAE, MSE, R2, RMSE ANN, KNN, LR, RF, SVR RF 

Sharma et al. (2024) 2,930 S, L, N sale prices adj. R2, MAE, MSE, R2 LR, MLP, RF, SVR, XGBoost XGB 

Stang et al. (2022) 1,212,546 S, L, N sale prices MAPE, MedAPE, PE(x), R2 GAM, LR, XGBoost XGBoost 
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Talaga et al. (2019) 21,000 S, L sale prices MAPE CART, Ensembles, MLP, LR, RF, XGBoost Ensemble 

Tekin & Uçal Sarı (2022) 3,514 S, L sale prices MAPE, R2 CART, LR, RF, XGBoost RF 

Trawiński et al. (2017) 12,439 S sale prices MAE CART, Ensembles, MLP Ensemble 

Waddell & Besharati-Zadeh (2020) 363,010 S, L, N rent prices RMSE LR, RF RF 

Xu & Li (2021) ± 148,000 S, L sale prices RMSE AdaBoost, Ensemble, GB, LightGBM, RF, XGBoost Ensemble 

Yazdani (2021) 1,061 S, L, N sale prices MAE, R2, RMSE ANN, KNN, LR, RF RF 

Yilmazer & Kocaman (2020) 1,162 S, L sale prices adj. R2, R2, RMSE LR, RF RF 

Yoshida & Seya (2021) 4,588,632 S, L rent prices MAE, MAPE, RMSE ANN, LR, RF, XGBoost XGBoost 

Zhan et al. (2023) 1,898,175 S, L, M sale prices adj. R2, EVS, MAD, MAE, MAPE, 
ME, MGD, MPD, MSE, PL, R2, RMSLE, RMSE 

AdaBoost, CatBoost, CNN, ensembles, GB, KNN, LSTM, 
RF, SVR, XGBoost CatBoost 

Zhou et al. (2019) 76,487 S, L rent prices MAE, MAPE, RMSE ET, GB, KNN, LASSO, LR, MLP, RF, Ridge RF 

With  L = Location, M = Macroeconomic, N = Socioeconomic/Neighborhood, S = Structural;  

AIC = Akaike Information Criterion, adj. R2 = Adjusted Coefficient Of Determination, COD = Coefficient Of Dispersion, EVS = Explained Variance Score, MAE = Mean Absolute Error, MAD = Median Absolute 

Deviation, MAPE = Mean Absolute Percentage Error, MGD = Mean Gamma Deviance, ME = Max Error, MedAE = Median Absolute Error, MedAPE = Median Absolute Percentage Error, MedE = Median Error, 

MPD = Mean Poisson Deviance, MSE = Mean Squared Error, PE(x) = Percentage Predicted Error within x%, PL = Pinball Loss, PRD = Price-Related Differential, R2 = Coefficient Of Determination, RMSE = Root 

Mean Square Error, RMSLE = Root Mean Square Log Error, and SI = Synthesis index;  

AdaBoost = Adaptive Boosting, ANN = Artificial Neural Network, CART = Classification And Regression Tree, CatBoost = Category Boosting, CHAID = Chi-Squared Automatic Interaction Detection, CNN = 

Convolutional Neural Networks, EN = Elastic Net, ET = Extra Trees, GAM = Generalized Additive Model, GB = Gradient Boosting, GLM = Generalized Linear Models, GWR = Geographically Weighted Regression, 

KNN = K-Nearest Neighbours, LASSO = Least Absolute Shrinkage and Selection Operator, LightGBM = Light Gradient Boosting, LR = Linear Regression, LSTM = Long-Short-Term-Memory, MLP = MultiLayer 

Perceptron, RF = Random Forest, SAR = Spatial Autoregressive Regression, SVR = Support Vector Regression, and XGBoost = eXtreme Gradient Boosting. 
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Table 2 Summary statistics for the target variable and features 

Feature name Data type Nr. of observations Min. Max. Mean Median St. Dev. Skew. Kurt. Cor. with target var. 
Monthly rent price (in EUR) Continuous 79,735 370 4,100 903.07 800 366.27 2.77 12.37   

Area (in m2) Continuous 60,520 62 5,332 706.84 360 890.70 2.53 6.90 0.00 

Build year Continuous 43,241 1,700 2,023 1,990.95 2,006 35.33 -1.72 4.45 -0.12 

Building area (in m2) Continuous 59,106 25 2,637 237.04 128 316.42 3.71 16.79 0.02 

Distance to bus stop (in m) Continuous 70,247 1 5,008 185.12 142 195.49 5.41 51.02 0.08 

Distance to school (in m) Continuous 70,247 0 7,857 353.70 246 365.34 3.70 25.49 0.06 

Distance to train station (in m) Continuous 70,247 0 13,876 1,926.79 1,213 1,947.13 1.87 3.31 0.00 

Distance to the village centre (in m) Continuous 70,247 1 13,948 1,488.03 1,019 1,503.20 2.34 7.03 0.00 

Double glass (0 = no, 1 = yes) Binary 79,735 0 1 0.72 1 0.45 -0.98 -1.04 0.07 

Energy consumption (in kWh/m2 per year) Continuous 50,490 8 1,482 225.44 188 157.62 1.85 5.75 -0.06 

Floor Integer 66,816 0 38 1.44 1 1.84 3.37 24.83 -0.08 

Garden (0 = no, 1 = yes) Binary 79,735 0 1 0.65 1 0.48 -0.63 -1.60 0.08 

Garden area (in m2) Continuous 46,696 24 3,970 483.61 223 663.63 2.65 7.91 -0.02 

Habitable area (in m2) Continuous 78,393 24 510 102.09 91 45.50 1.55 3.92 0.55 

Housing type (0 = apartment, 1 = house) Binary 79,735 0 1 0.26 0 0.44 1.11 -0.78 0.29 

Locality*** Nominal 78,788 / / / / / / / / 
Mobility score* Continuous 79,551 0.25 1 0.79 0.82 0.12 -0.94 0.64 -0.02 

New build (0 = no, 1 = yes) Binary 79,735 0 1 0.13 0 0.34 2.17 2.71 0.03 

Number of bathrooms Integer 73,140 1 4 1.26 1 0.52 2.13 5.04 0.46 

Number of bedrooms Integer 79,735 1 6 2.02 2 0.90 0.86 0.93 0.53 

Number of floors in the building Integer 45,975 0 43 2.96 3 2.57 4.55 44.46 0.09 

Number of parking spaces Integer 39,801 0 15 1.37 1 1.32 3.60 24.41 0.16 

Number of sides (1, 2, 3, 4) Ordinal 45,417 1 4 2.45 2 0.78 0.74 -0.22 0.17 

Number of toilets Integer 63,706 0 6 1.29 1 0.59 1.30 3.65 0.51 

Proneness to flooding** Nominal 78,788 / / / / / / / / 
Solar panels (0 = no, 1 = yes) Binary 79,735 0 1 0.08 0 0.27 3.09 7.53 0.03 

* The mobility score indicates the environmental impact of travel from one's property. It shows how well facilities such as schools, stores, and public transport, ... are accessible by bike or on foot.                                                                                             
** Categories are ‘yes’, ‘possible’, and ‘no’. *** This feature had 578 categories
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3.2. Data pre-processing 

Before model training, we pre-process the data in four steps. First, the dataset was 

randomly split into two parts using the train-test data split: training (80%) and test (20%) 

datasets, respectively for model training and model evaluation. Second, we handled 

missing values with a straightforward imputation method, which consists of replacing 

missing values with either the mean for numeric (integer and continuous) features or the 

mode for categorical (binary and nominal) features. Third, we one-hot encode the nominal 

feature ‘Proneness to flooding’. Fourth, for the feature ‘Locality’, we use the target 

encoder from the Python package category_encoders 2.6.3 because one-hot encoding this 

high cardinal categorical feature with 578 categories would lead to high dimensionality. 

3.3. ML algorithms 

In our research, we test a variety of regression algorithms selected by previous research 

and all available algorithms in the Python package PyCaret (Ali, 2023). As such, the 

following algorithms were selected: LR, LASSO regression, ridge regression, EN 

regression, least angle regression (LAR), LASSO least angle regression (LLAR), 

orthogonal matching pursuit regression (OMP), Bayesian ridge regression (BR), 

automatic relevance determination regression (ARD), passive aggressive regressor 

(PAR), random sample consensus regression (RanSaC), TheilSen regressor (TR), Huber 

regressor (Huber), SVR, KNN regressor, CART regressor, RF regressor, ET regressor, 

AdaBoost regressor, GB regressor, MLP regressor, XGBoost regressor, LightGBM 

regressor, and CatBoost regressor. Furthermore, we add a GAM, symbolic regressor 

(SR), and ensembles (averaging model and stacking model based on RF, XGBoost, and 

CatBoost) into the mix. 

3.4. Model training 

For ML, hyperparameter optimization is also important for solving the problem of 

choosing a set of optimal hyperparameters for a learning algorithm. The models are 

trained using the train dataset with hyperparameter tuning and 10-fold cross-validation to 

reduce the likelihood of overfitting We use the tree-structured Parzen estimator, a 
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Bayesian optimization approach, for hyperparameter tuning that has been shown to 

outperform traditional methods (Yang & Shami, 2020). During the hyperparameter 

tuning process, we use MAPE as a scoring metric.  

3.5. Model evaluation 

To evaluate the models, we calculate traditional – as deduced by Table 1 – and alternative 

metrics for real estate applications, as proposed by Steurer et al. (2021). The selected 

metrics are defined in Table 3. 

The evaluation metrics are calculated on both the train and test datasets, to obtain 

an impression about the degree of overfitting. Furthermore, metrics per decile of the test 

data are also considered for the evaluation of the models.  

Table 3 Selected evaluation metrics and their definition 

Metric Definition  
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Max-min percentage error range 
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> 𝑥, 
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with 𝑛 the number of observations in the respective dataset, 𝑦! the actual rent for property 𝑖 and 𝑓! the 

predicted rent for property 𝑖. 
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4. Results and discussion 

The results were generated in Python, using the Python package Pycaret 3.2.0 for data 

pre-processing and model training of LR, LASSO regression, ridge regression, EN 

regression, LAR, LLAR, OMP regression, BR regression, ARD regression, PAR, 

RanSaC regression, TR, Huber regressor, SVR, k–nearest neighbors regressor, CART 

regressor, RF regressor, ET regressor, AdaBoost regressor, GB regressor, MLP regressor, 

XGBoost regressor, LightGBM regressor, CatBoost regressor, averaging and stacking 

that uses the Python packages numpy 1.26.0, pandas 2.1.1, sklearn 1.2.2, xgboost 2.0.2, 

catboost 1.2, lightgbm 4.1.0 for the models. The Python package optuna 3.4.0 was used 

for hyperparameter tuning. For the GAM and SR, the Python packages pygam 0.9.0, and 

gplearn 0.4.2 were respectively used. 

First, it is noticeable that the evaluation metrics of the models in panel (A) of 

Table 4, which contains mainly linear models, are worse for both the test and train set 

than those in panel (B) of Table 4, which contains mainly (tree-based) ensemble models 

and some more complex ML models. When looking at the differences between the 

evaluation metrics for the train and test set, it is noticeable that for the linear models in 

panel (A) of Table 4, there are smaller differences. For panel (B) of Table 4, those 

differences are larger, which could indicate overfitting for the latter panel. Looking 

deeper into panel (B), we infer that the Adaboost model does not perform as well as the 

other members in the tree-based ensemble model family. As also highlighted from the 

literature in Table 1, this study confirms that XGBoost, CatBoost, and RF, score well on 

real estate datasets. The performance discrepancy between the linear and tree-based 

models can be attributed to the inherent strengths of these tree-based models to, among 

others, capture complex, non-linear, and interactive patterns within real, while linear 

models, assume a linear relationship between the target variable and the features, which 

oversimplifies the relations in the data. 

Among the tree-based ensembles in panel (B) of Table 4, the CatBoost model has 

the majority of the better evaluation metrics except mmPEr and IQRat. For mmPEr and 

IQRat, ET performs slightly better. However, the question is whether the magnitude of 

this better performance is noteworthy. For the difference between the metrics of the train 

and test set, the CatBoost model seems to perform well in this regard because the 

differences are small. However, what is noticeable is that the ET model seems to overfit 
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on the train set because it has nearly perfect metrics on that set, but the metrics on the test 

set have similar values to the other members of the tree-based ensemble model family.  

Note further in panel (B) of Table 4 that for LightGBM the differences in the 

metrics between the train and test set are very small, indicating that it overfits the least of 

the tree-based models. Less overfitting could lead to less frequent retraining of the model 

because it could generalize better. Furthermore, the differences between the evaluation 

metrics of the tree-based models are not particularly large. For example, for MAE the 

difference between the LightGBM and the CatBoost model is just 4.6 (EUR) to the 

LightGBM's disadvantage. The question thus arises as to whether these slightly worse 

metrics outweigh whether the model has less overfitting. 

Furthermore, the metrics in panel (A) of Table 4 report the PAR as by far the 

worst model. The PAR is followed by the SVR, which contradicts Alkan et al. (2022) and 

Pai & Wang (2020) who found in their research that SVR performed better than RF and 

NN respectively. In addition, it is inferred that for the linear models – LR, LASSO, ridge, 

EN, LAR, LLAR, OMP, BR, ARD, PAR, Ransac, TR, and Huber – the metrics are almost 

all the same. This suggests that those linear models, that are variants of the original LR 

model, are thus toning down to that LR model. Additionally, when looking at the 

differences between evaluation metrics of linear models between the train and test set, it 

is noted that they are small, suggesting that the linear models have little overfitting on the 

training data, which is also observed by Lenaers et al. (2023). 

Furthermore, note in Table 4 that traditional metrics, such as RMSE, MAPE, 

COD, R2, and MAE draw similar conclusions as the alternative metrics – mmMAPE, 

mmPER, and IQRat – put forward by Steurer et al. (2021). The best-performing models 

in this study, according to the evaluation metrics, which are nearly equal for the two 

ensembles, are averaging and stacking (of the RF, XGBoost, and CatBoost models). 

However, it is noted that differences between train and test sets are larger than for the 

CatBoost model, which would indicate that the stacking and averaging ensembles have 

more overfitting. In addition, one can criticize whether for the small improvements in 

evaluation metrics compared to the metrics of the CatBoost, ET, and XGBoost it is 

justifiable to make this more complex model. 

Evaluation metrics by decile for the test dataset for some of the best-performing 

models – stacking, CatBoost, XGBoost, and RF – are shown in Fig. 1 (a), 1 (b), 1 (c), 1 

(d), 1 (e), 1 (f), and 1 (g) for MAE, MAPE, COD, RMSE, mmPER, IQRat, and mmMAPE 

respectively. Notice visually that the differences between the selected models are not 
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large. It is also inferred that all the metrics have similar trends. There is lower 

performance of the models for the extremes, i.e., deciles 1, 2, and 3 and deciles 8, 9, and 

10. The best metrics are obtained for the observations in the middle range. However, the 

strength of the side where the performance is lower depends on the metric. Thus, it is 

observed that the absolute evaluation metrics, RMSE and MAE, have a lower 

performance in decile 10 because the error is higher there. Note that the differences for 

RMSE and MAE between decile 4 and decile 10 differ by about a factor of 5. With 

MAPE, a relative metric, this is the opposite, since decile 1 gives poorer evaluation 

metrics there. This contradiction is logical, since deviations in decile 1 have a small 

absolute impact, but can be relatively large. This is different for mmMAPE and mmPER, 

where both decile 1 and decile 10 have similarly worse evaluations relative to the middle-

range deciles. For IQRat and COD, the lower deciles are worse in terms of evaluation 

metrics than relative to the middle-range deciles. However, the higher deciles are even 

worse because they have inferior values than the metrics of the lower deciles. The 

difference between the deciles with the highest value and the lowest value for MAPE, 

COD, mmPER, IQRat, and mmMAPE is about a factor of 2.  

It is also important to critically consider the results and the time to train the models 

with hyperparameter tuning and 10-fold cross-validation. After all, hyperparameter 

tuning and training the random forest took over 45 hours, and logically the ensembles, 

containing the RF, require even more computational time. This is considerably more than, 

for example, the LightGBM which took little more than 10 minutes. Hence, the question 

arises here whether, for a similar performance between the tree-based models, one can 

defend the very long training time of the RF. In addition, the training time of the linear 

models which took on average less than a minute, is relatively seen a lot less time than 

that for the hyperparameter tuning and training of the tree-based ensembles.  

The choice of whether a model is appropriate for one's real estate application 

depends on several considerations in which the modeler has a share. For example, the 

focus may be on the differences between the test and train set for the metric or better said, 

minimal overfitting. On the other hand, there is a possible trade-off between training time 

and the performance of the models. Another interesting consideration is the one towards 

interpretation with XAI techniques, including SHapley Additive exPlanations (SHAP). 

SHAP is a model-agnostic technique that helps to understand the importance of features 

in making a prediction. For tree-based models, there is a speed-up version for calculating 

SHAP via TreeSHAP (Molnar, 2022), and for linear models with LinearSHAP. Although 



 

 
16 

the averaging and stacking models have the best evaluation on the test set, for both 

traditional and the alternative metrics proposed by Steurer et al. (2021), in that case, an 

argument can be made in favor of tree-based and linear models at the expense of the 

complex averaging and stacking ensembles in this study. 

5. Conclusions 

This study compared traditional and alternative evaluation metrics among 28 ML models 

for predicting rents based on 25 features and the target variable monthly rent from cleaned 

Belgian residential real estate data of 2022. 

It follows from the comparison that averaging and stacking ensemble models 

based on RF, XGBoost, and CatBoost performed best. However, the results of the 

averaging and stacking ensemble models are close to those of the tree-based ensemble 

models, including RF, XGBoost, and CatBoost. The good performance of the tree-based 

models confirmed previous research. The practical implication is that real estate price 

modelers are well advised to look toward tree-based ensemble models. Depending on the 

computational capacity, albeit time or computer resources, at hand, modelers can choose 

between (tree-based) ensemble models. Accurate models will help real estate agents in 

delivering precise valuations, and focus on other matters linked to the rental of a property. 

It will also help other stakeholders such as tenants to determine what a realistic rent price 

is. Also, with accurate models, investors can check whether it is profitable to make certain 

investments. Moreover, the government can intervene if investors do not make the 

necessary investments that are desired, think about energetic investments. 

Further as was already made apparent from the literature, more complex ML 

models outperform simple linear models in terms of evaluation metrics on both train and 

test sets. Practitioners should favor these complex models when predictive accuracy is 

crucial. In addition, it would also be interesting for researchers to interpret and study the 

models to gain new insights, compared to classical econometric research. However, this 

research does not confirm the good performance of SVR found by some authors.  

In addition, we were able to infer from the results that the traditional metrics – 

RMSE, MAPE, MAE, COD, R2 – and alternative metrics – mmPER, mmMAPE, IQRat 

– proposed by Steurer (2022) yield approximately the same findings. Future research 

should continue to validate these metrics across different real estate datasets and contexts 

to ensure their robustness. 
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Table 4 Evaluation metrics for the ML models 

(A) 

Model SR LR LASSO Ridge EN LAR LLAR OMP BR ARD PAR RanSaC TR Huber 

 Train dataset 

MAE 177.8 139.7 139.7 139.7 139.6 187.8 139.7 140.4 139.7 139.7 328.3 176.3 140.1 148.8 

MAPE 0.182 0.154 0.154 0.154 0.153 0.217 0.154 0.155 0.154 0.154 0.411 0.196 0.153 0.155 

COD 0.192 0.151 0.151 0.151 0.151 0.275 0.151 0.152 0.151 0.151 0.787 0.197 0.148 0.158 

RMSE 286.9 206.7 207.5 206.7 207.7 264.3 207.5 207.9 206.7 206.7 410.3 262.7 211.3 238.6 

R2 0.387 0.682 0.679 0.682 0.679 0.480 0.679 0.678 0.682 0.682 0.254 0.486 0.667 0.576 

mmMAPE 0.222 0.172 0.171 0.172 0.171 0.278 0.171 0.172 0.172 0.172 0.702 0.227 0.169 0.178 

mmPER 0.640 0.589 0.588 0.589 0.587 0.695 0.588 0.591 0.589 0.589 0.858 0.659 0.580 0.578 

IQRat 0.141 0.119 0.118 0.119 0.118 0.168 0.118 0.119 0.119 0.119 0.142 0.148 0.115 0.117 

TT 00:02:43 00:00:27 00:00:28 00:00:28 00:00:28 00:00:28 00:00:27 00:00:27 00:00:28 00:00:33 00:01:17 00:04:16 00:08:06 00:00:38 

 Test dataset 

MAE 179.6 141.4 141.3 141.4 141.3 191.1 141.3 142.0 141.4 141.4 330.1 178.4 141.9 150.9 

MAPE 0.184 0.155 0.155 0.155 0.155 0.219 0.155 0.156 0.155 0.155 0.412 0.197 0.155 0.157 

COD 0.193 0.152 0.152 0.152 0.151 0.283 0.152 0.153 0.152 0.152 0.365 0.196 0.150 0.160 

RMSE 288.0 211.2 211.7 211.2 211.9 272.1 211.7 212.1 211.2 211.2 411.9 264.7 215.2 242.5 

R2 0.379 0.666 0.665 0.666 0.664 0.446 0.665 0.663 0.666 0.666 0.270 0.475 0.653 0.560 

mmMAPE 0.224 0.173 0.172 0.173 0.172 0.312 0.172 0.174 0.173 0.173 0.447 0.229 0.171 0.181 

mmPER 0.642 0.593 0.589 0.593 0.586 0.696 0.589 0.591 0.593 0.593 0.862 0.665 0.584 0.580 

IQRat 0.142 0.119 0.119 0.119 0.119 0.166 0.119 0.120 0.119 0.119 0.143 0.150 0.115 0.119 

With TT = Training Time in hours, minutes and seconds 
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(B) 

Model ET Adaboost GB XGBoost CatBoost LightGBM MLP RF GAM Averaging Stacking SVR KNN CART 

 Train dataset 

MAE 0 152.3 82.5 78.0 92.1 107.0 111.0 38.1 129.5 67.3 70.8 176.4 0 100.8 

MAPE 0 0.168 0.094 0.090 0.103 0.120 0.126 0.042 0.143 0.076 0.080 0.178 0 0.109 

COD 0 0.166 0.092 0.088 0.101 0.116 0.120 0.040 0.140 0.074 0,.078 0.195 0 0.110 

RMSE 1.6 224.5 113.6 107.9 131.2 153.4 160.0 58.9 192.5 95.1 99.7 295.1 1.5 159.2 

R2 1 0.625 0.904 0.913 0.872 0.825 0.803 0.974 0.724 0.933 0.926 0.351 1 0.811 

mmMAPE 0 0.188 0.101 0.096 0.111 0.130 0.135 0.043 0.158 0.080 0.084 0.217 0 0.121 

mmPER 0 0.612 0.385 0.361 0.421 0.483 0.498 0.083 0.558 0.284 0.309 0.629 0 0.439 

IQRat 0 0.128 0.073 0.069 0.079 0.090 0.091 0.030 0.110 0.058 0.061 0.136 0 0.079 

TT 17:03:34 00:06:00 00:20:20 00:16:39 00:14:37 00:10:29 00:36:35 45:06:33 00:02:46 62:29:42 62:33:29 01:58:40 00:01:49 01:14:01 

 Test dataset 

MAE 104.4 153.1 105.0 104.0 102.6 107.2 119.6 104.4 132.0 100.3 99.9 178.2 150.4 120.4 

MAPE 0.113 0.168 0.114 0.113 0.112 0.117 0.130 0.113 0.145 0.109 0.108 0.180 0.162 0.127 

COD 0.110 0.167 0.112 0.111 0.110 0.115 0.127 0.110 0.142 0.107 0.107 0.196 0.164 0.129 

RMSE 163.7 227.0 161.1 159.3 157.3 163.9 184.0 164.1 200.1 155.1 154.3 296.1 241.3 190.0 

R2 0.800 0.614 0.806 0.810 0.815 0.799 0.747 0.798 0.700 0.820 0.822 0.344 0.564 0.730 

mmMAPE 0.123 0.189 0.124 0.123 0.121 0.127 0.142 0.123 0.161 0.118 0.118 0.219 0.186 0.143 

mmPER 0.442 0.615 0.454 0.451 0.448 0.466 0.509 0.444 0.556 0.431 0.430 0.630 0.573 0.509 

IQRat 0.082 0.128 0.085 0.084 0.084 0.087 0.096 0.082 0.110 0.080 0.080 0.138 0.116 0.097 

With TT = Training Time in hours, minutes and seconds 
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Fig. 1 Evaluation metrics on the test set per decile for selected models 
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Furthermore, an important remark is to be made for the quality of the predictions 

per decile, indeed it was deduced from the obtained results that the predictions are very 

good for the observations in the central deciles – i.e. with mean rent prices –, but when 

looking at the low or high deciles – the tails – it is noticeable that the errors on the 

predictions are worse. Indeed, the differences between the best and worst deciles differ 

by a factor of 2 for MAPE, COD, mmPER, mmMAPE, and IQRat and differ by a factor 

of 5 for RMSE and MAE. So, this whole, that the metrics are better for observations in 

the middle-range deciles, will have an influence that must be considered during the 

modeling of rent prediction. Thus, it will be possible to better indicate how accurate the 

predictions are and provide a better impression of rents. Practitioners should consider this 

variability and possibly apply different models or additional preprocessing steps to 

improve overall prediction accuracy. Linked to this, it may be interesting to provide a 

price range or confidence bounds when predicting real estate prices so that variability can 

be captured and conveyed. 

However, there are also limitations to this research. For example, tree-based 

models are also good at training on data with missing values. This study did not take 

advantage of that because the missing data was imputed. Another limitation is data 

preprocessing, for which no general framework is yet available for real estate research 

and applications. In addition, there is the possibility and thus limitation that some of the 

models in this study overfit, given the differences that are noticed for some models in the 

metrics between the train and test set. Thus, this would not lead to good generalizability 

to unseen data. There is also a limitation of the data, for example, we are working with 

the advertised rent prices and not the actual rent prices. In addition, the data is also data 

that is fed into websites by real estate agents and individuals. Therefore, it is not immune 

to input errors. Although a data cleaning was held beforehand, it is always possible that 

some errors slipped through the net. 

Considering potential future research, there are many avenues, a few of which we 

highlight here. First, the setup should be applied to other datasets to validate the results. 

After all, there is the possibility that real estate data from, for example, properties for sale 

or other regions, have different characteristics and therefore obtain different findings. 

Further, although the tree-based models are black-box, follow-up research may involve 

deriving the relationships, evolutions, and trends between property prices and their 

determinants from tree-based models using XAI techniques. After all, interpreting the 

tree-based models is relatively quick to perform via SHAP via TreeSHAP, for example, 
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compared to an averaging or stacking ensemble. The interesting characteristic is that the 

tree-based models allow nonlinear and interactive relationships, which is not the case in 

classical econometric research based on linear regression. Optionally, after interpreting 

the tree-based models with XAI techniques, it is also feasible to derive the specification 

of a classical LR model. Finally, there is the opportunity for the study of other, unapplied 

algorithms. These could include existing neural network algorithms such as TabNet or 

customized neural networks for predicting real estate prices. 
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